Heatsink Reviews and Analysis
> GO < Search
TOP 5 BEST Heat Sinks     SEARCH     News     Reviews    
Follow Frostytech on FacebookFrostytech News RSS FeedFollow frostytech on Twitter
° Latest Heatsink Reference Chart Containing Review
° Reviews and Articles
° Breaking News
° Mfg's Index
° Top 5 Heatsinks
° Top 5 Liquid Cooling
° Top 5 Low Profile   Heatsinks

Top 5 Heatsink Charts

What's New in Heatsinks?
°  NZXT Aer F120 and F140 Cooling Fans Review

°  FSP Windale 6 Cooler Review

°  Fractal Design Celsius S24 Water Cooling System Review @ APH Networks

°  Fractal Design Celsius S24 Water Cooling System Review

°  Fractal Design Celsius S24

°  CRYORIG Releases NZXT CAM Powered H7 Quad Lumi RGB Cooler

   - or - Best 5 Heatsinks?
Akasa EVO 120 AK-920 Low Noise Heatsink Review
Akasa EVO 120 AK-920 Low Noise Heatsink Review
Overall Rating:   88%
Abstract: The new, 2007 model Akasa EVO 120 improves on these shortcomings with a stocky copper base, and three chunky 8mm diameter heatpipes.

 Company link     Category     Published     Author    
akasa   $$ Price It! ££ Cooling / Heatsinks   Jan 31, 2007   Max Page  

This is the second revision of the Akasa EVO 120 (AK-120) heatsink, the first model produced under this name utilized thinner diameter heatpipes and a slim copper base. The new, 2007 model Akasa EVO 120 improves on these shortcomings with a stocky copper base, and three chunky 8mm diameter heatpipes. The changes have been well worth it, allowing the Akasa EVO 120 to handle high heat loads from Intel Core 2 Duo/Quad and AMD Athlon64 processors with quiet ease.

The heatsink stands 153mm tall, and occupies a footprint of 103mm, though the cooling fin portion is just 60mm thick. The three heat pipes distribute heat over an array of aluminum cooling fins that mirror the 120mm fan used here. The cooling fins are short, and built to disperse heat energy as quickly as possible to the surrounding environment. A single 120mm fan blows air tangentially across the fins at a moderate pace, without generating much in the way of noise.

Despite its large volume, Akasa's EVO 120 heatsink isn't overly heavy, weighing perhaps 450-500 grams. The heatsinks ships with the 120mm fan and a fan speed controller which enables the user to really dial speed down if desired. A pile of brackets and mounting clips allow the Akasa EVO 120 heatsink to install onto socket 775 and socket 754/939/940/AM2 processors easily.

Akasa Evo120 Heatsink
Manufacturer: Akasa
Model No.: Evo120 / AK-920
Materials: Aluminum fins, copper heatpipes and copper base.
Fan Mfg: Paxpower KM121225LB
Fan Spec: 1000-2000RPM, 12V, 0.18A
Fan Dim: 25x120x120mm
Heatsink & Fan Dim: 153x125x103mm
Weight: ~450 grams est.
Includes: multisocket mounting hardware, fan speed controller, molex power cables, printed instructions.

Compatible with Sockets: 754/939/940/AM2 and 775
Est. Pricing: $54USD ($59CDN)

There are a couple different sets of mounting brackets included with the Akasa EVO 120 heatsink, one for AM2, 754/939/940 and 775 sockets in fact. The different brackets screw onto the copper base block, and this in turn is bolted down to the motherboard with any number of different screws and spring tensioned fasteners. The small instruction booklet included with the EVO 120 heatsink does a good job at demystifying the whole process.

The fan speed controller is mounted onto a blank PCI bracket, and where necessary a set up jumper cables are provided that transfer the fans' RPM signal to the motherboard. The fan can also just be plugged into any 3-pin motherboard fan header, depending on your preference. The accessory is standard enough, it just would have been nicer if the knob was knurled or patterned; the smooth surface is a little slippery.

The three large diameter heatpipes at the heart of the Akasa EVO 120 heatsink fulfill the important role of transferring heat from the copper base to aluminum cooling fins. This you already know, but do you really have a handle on how the heatpipes do this?

Heatpipes Explained

The system works like this; as heat energy from the processor reaches the two heatpipes - which are sealed off at both ends to contain a small amount of "working" fluid under a vacuum - a reaction begins to occur. The working fluid inside each heatpipe absorbs the latent heat from the copper plate below, causing the fluid to undergo a phase change into water vapour (ie. it converts to steam). In our daily lives, water boils at 100°C, but as pressure is decreased the temperature gradient required to make water convert to vapour also drops.

The small amount of working fluid inside each heatpipe quickly converts to vapour, as the temperature of the evaporator end (hot side) of tube increases. The liquid vapour inside the heatpipe is subsequently drawn to the cooler end of the heatpipe where it condenses. As the hot vapour cools back into a liquid, the heat energy that was previously stored is transferred to the metal, and then surrounding fins of the heatsink.

The condensed vapour, now working fluid once again, is drawn back towards the hot evaporator end of the tube by capillary action along an internal wick structure. As the liquid reaches the hot end once more, the entire process repeats itself. This is how heatpipes work, and how the Akasa EVO 120 heatsink is able to keep the processor under it running cool.

FrostyTech's new Test Methodology is outlined in detail here if you care to know what equipment is used, and the parameters under which the tests are conducted. Now let's move forward and take a closer look at the Akasa EVO 120 heatsink, its acoustic characteristics, and of course it performance in the thermal tests!

° Next Page 

Article Contents:
 Page 1:  — Akasa EVO 120 AK-920 Low Noise Heatsink Review
 Page 2:  360° View - Akasa EVO 120 heatsink
 Page 3:  Acoustic Comparisons and Base Surface Quality
 Page 4:  K8 AMD Heatsink Temperature Comparisons
 Page 5:  Intel 775 Heatsink Temperature Comparisons

° Got Feedback?
° Mk.II Test Platform
° Where To Buy?
° Manufacturer Index
° Industry Dir.
° Cooling Projects

DeepCool Maelstrom 240 Liquid Cooling System Review

DeepCool Gamer Storm Lucifer K2 Heatsink Review

Gelid Antarctica Heatsink Review

Noctua NH-D9L 3U Low Noise Heatsink Review

BeQuiet Shadow Rock LP Heatsink Review

IBM Watson Analytics for Heatsink Test Data
...More Articles >>


Websites you may also like:

Google Search Frostytech

Time stamped: 7:16PM, 05.24.2017
Since June 1999

Find a Heatsink / RSS Feeds
Latest Heatsink Reviews
Top 5 Heatsinks Tested
News RSS Feed
Reviews RSS Feed

Social Media
Facebook Fan Page
Pinterest Info
Contact Us / Heatsink Submissions
Submit News

Contact the Suite 66 Advertising Agency
© Copyright 1999-2017 All Rights Reserved. Privacy policy and Terms of Use
Images © and may not be reproduced without express written permission.